Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aziz Alaoui Tahiri, ${ }^{a}$ Rachid Ouarsal, ${ }^{\text {a }}$ Mohammed Lachkar, ${ }^{\text {a }}$ Peter Y. Zavalij ${ }^{\text {b }}$ and Brahim El Bali ${ }^{\text {a }}$

${ }^{\text {a }}$ Laboratoire des Matériaux et Protection de I'Environnement, Département de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas 30003, Fès, Morocco, and ${ }^{\mathbf{b}}$ Institute for Materials Research and Department of
Chemistry, State University of New York at Binghamton, NY 13902-6000, USA

Correspondence e-mail:
belbali@eudoramail.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{O})=0.004 \AA$
R factor $=0.056$
$w R$ factor $=0.093$
Data-to-parameter ratio $=18.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Dipotassium zinc bis(dihydrogendiphosphate) dihydrate, $\mathrm{K}_{2} \mathbf{Z n}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot \mathbf{2 H} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

The framework of $\mathrm{K}_{2} \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ contains acid diphosphate-metallate layers linked by $\mathrm{K} \cdots \mathrm{O}$ interactions and weak hydrogen bonds. Zn^{2+} cations are coordinated octahedrally by O atoms from two bidentate $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]^{2-}$ anions and two water molecules.

Comment

To our knowledge, no mixed dihydrogendiphosphates of the form $(A, T)_{x}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{y} \cdot z \mathrm{H}_{2} \mathrm{O}(A=$ alkaline earth and $T=$ transition metal) have been reported. Some simple alkali metal dihydrogendiphosphates are known: $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Collin \& Willis, 1971), $\mathrm{K}_{2} \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Larbot et al., 1983), $\mathrm{K}_{2} \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Dumas et al., 1973), $\mathrm{K}_{3} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}$ (Dumas, 1978), $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}$ (Dumas et al., 1980), $\mathrm{Rb}_{2} \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Averbuch-Pouchot \& Durif, 1993a) and $\mathrm{Cs}_{2} \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Averbuch-Pouchot \& Durif, 1993b). Acidic metal diphosphates have been implicated in some enzyme-catalysed reaction processes (Haromy et al., 1984) and are used as inhibitors in the formation and dissolution of apatite crystals in vitro (Mathew et al., 1993). We recently reported the structures of two hydrogendiphosphates, $\mathrm{K} M\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($M=\mathrm{Mn}, \mathrm{Zn}$) (Assaaoudi et al., 2002). We report here the structure of the dihydrogendiphosphate $\mathrm{K}_{2} \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot-$ $2 \mathrm{H}_{2} \mathrm{O}$.

The structure of $\mathrm{K}_{2} \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ can be described in terms of layers parallel to (001) (Fig. 1). Each layer is built up of $\left[\mathrm{KO}_{8}\right]$, $\left[\mathrm{ZnO}_{6}\right]$ and $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]$ polyhedra (Fig. 2), sharing

Figure 1
Projection along the b axis of $\mathrm{K}_{2} \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Polyhedra: yellow [$\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$], green $\left[\mathrm{ZnO}_{6}\right]$; circles: large pink K , small grey H .

Received 14 February 2003
Accepted 7 March 2003
Online 14 March 2003

Figure 2
Coordination polyhedra of $\left[\mathrm{KO}_{8}\right]$, $\left[\mathrm{ZnO}_{6}\right]$ and $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]$. Displacement ellipsoids are drawn at the 50% probability level.
corners and edges. The $\left[\mathrm{ZnO}_{6}\right]$ polyhedra share four corners with two neighbouring $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]$ anions to form the unit $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]$, I. The $\left[\mathrm{KO}_{8}\right]$ polyhedra share one edge to form the unit $\left[\mathrm{K}_{2} \mathrm{O}_{14}\right]$, II. Edge-sharing of units I and II results in a layer parallel to (001). Neighbouring layers are connected by K…O interactions and weak hydrogen bonds.

Each of the two unique phosphorus atoms is coordinated by four O atoms, one of which belongs to a hydroxyl group, in a slightly distorted tetrahedral geometry. The two tetrahedra share a corner $(\mathrm{O} 1)$ to form the $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]^{2-}$ anion in a roughly eclipsed conformation. The average $\mathrm{P}-\mathrm{O}$ distance of $1.533 \AA$ is similar to that found in $\mathrm{K}_{2} \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}(1.537 \AA)$ and $\mathrm{K}_{3} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}(1.543 \AA)$. The $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle of $128.85(6)^{\circ}$ is close to that in $\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (130.0 ${ }^{\circ}$; Calvo, 1968) and $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (130.3 ${ }^{\circ}$; Robertson \& Calvo, 1967). The Zn^{2+} ions are coordinated in a nearly regular octahedral geometry by two bidentate $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]^{2-}$ anions and two water molecules. The average $\mathrm{Zn}-\mathrm{O}$ distance of $2.084 \AA$ is close to that in $\beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\left(2.121 \AA\right.$; Calvo, 1965). The $\left[\mathrm{ZnO}_{6}\right]$ polyhedra are isolated, with the shortest $\mathrm{Zn} \cdots \mathrm{Zn}$ distance being over $6 \AA$. The K atoms are eightfold coordinated, with $\mathrm{K}-\mathrm{O}$ distances ranging from 2.757 (3) to 3.339 (4) \AA. The average $\mathrm{K}-\mathrm{O}$ distance of $2.959 \AA$ is slightly longer than those found in $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot 3 \mathrm{H}_{2} \mathrm{O}(2.812 \AA$; Dumas \& Galigue, 1974) and $\mathrm{K}_{2} \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (2.908 Å; Larbot et al., 1983).

Experimental

Stoichiometric amounts of ZnCl_{2} were dissolved in a $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ solution in distilled water. After it was stirred for 1 d and allowed to stand for two to three weeks, large prismatic colourless crystals were deposited. The crystals were filtered off and washed with a water-ethanol (20:80) solution.

Crystal data

$\mathrm{K}_{2} \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$Z=1$
$M_{r}=531.51$	
Triclinic, $P \overline{1}$	$D_{x}=2.479 \mathrm{Mg} \mathrm{m}^{-3}$
$a=6.827(3) \AA$	Mo $K \alpha$ radiation
$b=7.333(3) \AA$	Cell parameters from 1307
$c=7.570(3) \AA$	reflections
$\alpha=80.753(8)^{\circ}$	$\theta=2.8-29.8^{\circ}$
$\beta=72.547(8)^{\circ}$	$\mu=2.84 \mathrm{~mm}^{-1}$
$\gamma=83.442(8)^{\circ}$	$T=292(2) \mathrm{K}$
$V=356.0(2) \AA^{\circ}$	Prism, colourless
	$0.33 \times 0.12 \times 0.04 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer

ω scans

Absorption correction: multi-scan
(XPREP; Sheldrick, 1997)
$T_{\text {min }}=0.670, T_{\text {max }}=0.893$
4313 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.093$
$S=0.86$
2154 reflections
114 parameters

2154 independent reflections
1244 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.081$
$\theta_{\text {max }}=31.6^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-10 \rightarrow 10$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.001 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=1.28 \mathrm{e}_{\mathrm{A}_{\circ}^{-3}}$
$\Delta \rho_{\min }=-0.98 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters (\AA).

$\mathrm{K} 1-\mathrm{O}^{\mathrm{i}}$	$2.757(3)$	$\mathrm{Zn} 1-\mathrm{O} 2$	$2.080(3)$
$\mathrm{K} 1-\mathrm{O} 2^{\mathrm{ii}}$	$2.775(3)$	$\mathrm{Zn} 1-\mathrm{O} 1 W^{\mathrm{ii}}$	$2.116(3)$
$\mathrm{K} 1-\mathrm{O} 4^{\mathrm{iii}}$	$2.874(4)$	$\mathrm{Zn} 1-\mathrm{O} 1 W^{2}$	$2.116(3)$
$\mathrm{K} 1-\mathrm{O} 7^{\mathrm{iv}}$	$2.899(4)$	$\mathrm{P} 1-\mathrm{O} 3$	$1.485(3)$
$\mathrm{K} 1-\mathrm{O} 1 W^{\mathrm{ii}}$	$2.941(4)$	$\mathrm{P} 1-\mathrm{O} 2$	$1.490(3)$
$\mathrm{K} 1-\mathrm{O} 5$	$2.949(3)$	$\mathrm{P} 1-\mathrm{O} 4$	$1.556(3)$
$\mathrm{K} 1-\mathrm{O} 2^{\mathrm{v}}$	$3.139(3)$	$\mathrm{P} 1-\mathrm{O} 1$	$1.589(3)$
$\mathrm{K} 1-\mathrm{O} 3^{\mathrm{ii}}$	$3.339(4)$	$\mathrm{P} 2-\mathrm{O} 7$	$1.505(3)$
$\mathrm{Zn} 1-\mathrm{O} 5^{\mathrm{ii}}$	$2.057(3)$	$\mathrm{P} 2-\mathrm{O} 5$	$1.499(3)$
$\mathrm{Zn} 1-\mathrm{O} 5$	$2.057(3)$	$\mathrm{P} 2-\mathrm{O} 6$	$1.536(3)$
$\mathrm{Zn} 1-\mathrm{O} 2^{\mathrm{ii}}$	$2.080(3)$	$\mathrm{P} 2-\mathrm{O} 1$	$1.603(3)$

Symmetry codes: (i) $x, y, 1+z$; (ii) $1-x, 1-y, 1-z$; (iii) $1-x,-y, 1-z$; (iv) $2-x,-y, 1-z ;$ (v) $1+x, y, z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 4 \cdots \mathrm{O}^{\text {iii }}$	0.82	1.71	$2.529(5)$	175
O6-H6 $^{\mathrm{H}} \mathrm{O}^{\text {v }}$	0.82	1.70	$2.503(5)$	165
${\text { O1 } W-\mathrm{H} 1 W \cdots 3^{\text {vi }}}^{\text {vii }}$	0.82	1.95	$2.731(5)$	158
${\text { O1 } W-\mathrm{H} 2 W \cdots \mathrm{O}^{\text {vii }}}^{2}$	0.78	2.00	$2.775(5)$	171

Symmetry codes: (iii) $1-x,-y, 1-z$; (v) $1+x, y, z$; (vi) $1-x, 1-y,-z$; (vii) $x, 1+y, z$.

The highest peak, at $(0.3890,0.5338,0.4632)$, is $0.88 \AA$ from Zn 1 , $1.51 \AA$ from O2, $1.71 \AA$ from O5 and $1.95 \AA$ from O1W. H atoms were located in a difference Fourier map. The $\mathrm{O}-\mathrm{H}$ distance was constrained to be the same for all H atoms; all other parameters, including $U_{\text {iso }}$, were refined freely.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

References

Assaaoudi, H., Ennaciri, A., Harcharras, M., El Bali, B., Reinauer, F., Glaum, R., Rulmont, A. \& Spirlet, M.-R. (2002). Acta Cryst. C58, i79-i81.

Averbuch-Pouchot, M. T. \& Durif, A. (1993a). C. R. Hebd. Séances Acad. Sci. 316(2), 469-476.
Averbuch-Pouchot, M. T. \& Durif, A. (1993b). C. R. Hebd. Séances Acad. Sci. 316(2), 41-46.
Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

inorganic papers

Calvo, C. (1965). Can. J. Chem. 43, 1147-1153
Calvo, C. (1968). Inorg. Chem. 7, 1345-1351.
Collin, R. L. \& Willis, M. (1971). Acta Cryst. B27, 291-302.
Dowty, E. (1999). ATOMS for Windows and Macintosh. Version 5. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Dumas, Y. (1978). Acta Cryst. B34, 3514-3519.
Dumas, Y. \& Galigue, J. L. (1974). Acta Cryst. B30, 390-395.
Dumas, Y., Galigue, J. L. \& Falgueirettes, J. (1973). Acta Cryst. B29, 2913-2918.
Dumas, Y., Lapasset, J. \& Vicat, J. (1980). Acta Cryst. B36, 2754-2757.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Haromy, T. P., Knight, W. B., Dunaway-Mariano, D. \& Sundaralingam, M. (1984). Acta Cryst. C40, 223-226.

Larbot, A., Durant, J., Norbert, A. \& Le Cot, L. (1983). Acta Cryst. C39, 6-8. Mathew, M., Schroeder, L. W. \& Brown, W. E. (1993). J. Crystallogr. Spectrosc. Res. 23, 657-661.
Robertson, B. E. \& Calvo, C. (1967). Acta Cryst. 22, 665-672.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). XPREP and SHELXL97. University of Göttingen, Germany.

